
Day 2: Functions and
classes

Hamish Gibbs

Schedule
This morning:

Tutorials on functions and classes

This a�ernoon:

Getting Visual Studio Code set up for everyone.

Working on the optional tutorial or the “Extra” exercise.

Writing re-usable code
Code should be like a recipe.

Generally: good code tells how to do something, and what
you’ve done (separately).

Scripting vs. programming

Scripting: Small bits of code that do a single thing.

Programming: General-purpose “recipes” for
transforming inputs to outputs.

Example: scripting in python
A simple script for converting Fahrenheit to Celsius

What’s wrong with this?

Nothing! it works.

But what if we want to change the value of temp_f?

What if we want to convert multiple Fahrenheit values to
Celsius?

temp_f = 1001
2

temp_c = 5/9 * (temp_f - 32)3

Solution: Abstraction
We want to abstract the logic that converts temperatures
into a “recipe” with:

Input: any value in Fahrenheit.

Output: the converted value in Celsius.

Our “recipe” can be written as a Function.

Example: programming in Python
A function for converting temperatures:

Now, our logic can be applied to multiple values:

Or we can apply our to function to a list of values:

def convert_f_to_c(temp_f):1
 return 5/9 * (temp_f - 32)2

print(convert_f_to_c(100))1
print(convert_f_to_c(120))2

temps_f = [100, 120, 80]1
temps_c = [convert_f_to_c(x) for x in temps_f]2

Functions
Functions are a named bundle of logic.

I think of a function as a “pipe” that transforms values into
other values.

Example functions (Tip: useful for the challenge!):

model = fit_model(train)

fig = plot_scatterplot(data)

save_image(img, path)

Another analogy: think of functions as the “verbs” and
variables as the “nouns” of your program.

Composition
Functions help to break up your code into small, reusable
“modules.”

These modules can be composed together:

Programming is less about tricky logic problems, more
about writing abstractions and composing them together.

def convert_multiple_f_to_c(temps_f):1
 return [convert_f_to_c(x) for x in temps_f]2

Scripting vs. Programming
The line between scripting and programming is fuzzy.

O�en, you need to re-use bits of a script, so you start re-
writing it into functions.

If these functions are useful enough, you can incorporate
them into a library.

My own example of this (in R): .ggutils

https://github.com/hamishgibbs/ggutils

Classes: logic + data
Functions: logic (a “recipe”)

Variables: data (actual “values”)

Classes: An abstraction for combining data and logic.

Classes
Classes have two components:

Attributes: data.

Methods: functions.

Now, my functions are directly coupled to my data and I
have given this Object a name: WeatherStation.

 class WeatherStation:1
 def __init__(self, temps_f): # Default initialization method2
 self.temps_f = temps_f # an "attribute"3

4
 def convert_f_to_c(temp_f): # A "method"5
 return 5/9 * (temp_f - 32)6

7
 def convert_temps_f_to_c(self): # Another "method"8
 return [self.convert_f_to_c(x) for x in self.temps_f]9

Using a class
A class is a general purpose construct, like a function.

We have to initialize our class with some data:

Here, station is an instance of the class
WeatherStation.

Then we can use the methods of the class for this instance:

station = WeatherStation(temps_f = [100, 120, 80])1

print(station.convert_temps_f_to_c())1

Who cares?
Tomorrow, we will use classes a lot.

But, classes written by someone else!

See the pandas DataFrameDescriber class: .

You don’t have to understand what this code does!

The important thing is that you see how larger libraries
are made up of classes.

here

https://github.com/pandas-dev/pandas/blob/1e3bf39dc560948aac32a42f8266634d375fa53a/pandas/core/methods/describe.py#L136-L202

Inheritance
Classes can be extended to represent different objects
objects with the same interface.

Here, the WeatherStation has a general purpose
method get_temperatures_c which should always
return the temperature in Celsius.

 class WeatherStation:1
 def __init__(self, temps):2
 self.temps = temps 3

4
 def convert_f_to_c(self, temp_f):5
 return 5 / 9 * (temp_f - 32)6

7
 def get_temperatures_c(self):8
 return self.temps9

Inheritance
We could create two child classes which inherit the
WeatherStation interface.

Assuming an AmericanWeatherStation is always
initialized with temps in Fahrenheit:

 class AmericanWeatherStation(WeatherStation):1
2

 def get_temperatures_c(self):3
 return [self.convert_f_to_c(x) for x in self.temps]4

Inheritance
Assuming a EuropeanWeatherStation is always
initialized with temps in Celsius:

 class EuropeanWeatherStation(WeatherStation):1
2

 def get_temperatures_c(self):3
 return self.temps4

Inheritance
Inheritance gives a common interface.

Now, I can write a function that consumes any
WeatherStation object.

 def get_total_temp_c(station):1
 return sum(station.get_temperatures_c())2

Tutorial #1: Functions

Core concepts:

Using built-in functions (and the)

Writing your own functions

Composing functions

Functions

standard library
import math1
math.log10(10)2

def add_3(x):1
 return x + 32

def add_5(x):1
 return add_3(x) + 22

https://www.py4e.com/html3/04-functions
https://docs.python.org/3/library/index.html

Tutorial #2: Classes

Core concepts:

Writing custom classes

Initializing classes

Class inheritance

Object-oriented programming

class PartyAnimal:1

an = PartyAnimal()1

class CricketFan(PartyAnimal):1

https://www.py4e.com/html3/14-objects

Tutorial #2: possible pitfall
Tutorial #2 includes the following code:

This requires actually breaking our code into different
scripts (.py files).

We can’t do this because we are still using Colab.

For now, just carry on in the same Notebook.

We will introduce .py files this a�ernoon!

from party import PartyAnimal1

Tutorial #3: Functions (Optional)

This is more of a deep dive. If you feel shaky with the basics
of functions, work on that!

Core concepts:

Default arguments

Keyword arguments

More control flow tools §4.7-4.8 (Optional)

def add(x, y = 2):1
 return x + y2

add(4, x=4) # Error: duplicate value for the same argument1

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Extra
Try class composition exercise (Exercise #2).

Define and implement the classes required to represent a
music playlist: Artist, Song, Album, and Playlist.

this

https://python.pages.doc.ic.ac.uk/2020/modules/module-oop/lab-2

Recommendations
Take your time understanding functions.

Functions will be more immediately useful to improve
your programming!

If you have time, make sure to try the “Extra” exercise, it will
help you think about how functions and classes fit together.

