Day 2: Functions and
classes

Hamish Gibbs



Schedule

e This morning:
= Tutorials on functions and classes
e This afternoon:
» Getting Visual Studio Code set up for everyone.

= Working on the optional tutorial or the “Extra” exercise.



Writing re-usable code

e Code should be like a recipe.

= Generally: good code tells how to do something, and what
you’ve done (separately).

e Scripting vs. programming
= Scripting: Small bits of code that do a single thing.

= Programming: General-purpose “recipes” for
transforming inputs to outputs.



Example: scripting in python

e Asimple script for converting Fahrenheit to Celsius

temp_f = 100

temp_c = 5/9 * (temp_f - 32)
e What’s wrong with this?
= Nothing! it works.
= But what if we want to change the value of temp_f?

= What if we want to convert multiple Fahrenheit values to
Celsius?



Solution: Abstraction

e We want to abstract the logic that converts temperatures
into a “recipe” with:

= Input: any value in Fahrenheit.
= Qutput: the converted value in Celsius.

e Our “recipe” can be written as a Function.



Example: programming in Python

e Afunction for converting temperatures:

def convert_f_to_c(temp_f):
return 5/9 * (temp_f - 32)

e Now, our logic can be applied to multiple values:

print(convert_f_to_c(100))
print(convert_f_to_c(120))

e Orwe can apply our to functionto a 11st of values:

temps_f = [100, 120, 80]
temps_c = [convert_f_to_c(x) for x in temps_f]



Functions

e Functions are a named bundle of logic.

= | think of a function as a “pipe” that transforms values into
other values.

e Example functions (Tip: useful for the challenge!):
= model = fit_model(train)
= f1g = plot_scatterplot(data)
= save_1image(1img, path)

e Another analogy: think of functions as the “verbs” and
variables as the “nouns” of your program.



Composition

e Functions help to break up your code into small, reusable
“modules.”

e These modules can be composed together:

def convert_multiple_f_to_c(temps_f):
return [convert_f_to_c(x) for x in temps_f]

e Programming is less about tricky logic problems, more
about writing abstractions and composing them together.



Scripting vs.lProgramming

e The line between scripting and programming is fuzzy.

e Often, you need to re-use bits of a script, so you start re-
writing it into functions.

e |f these functions are useful enough, you can incorporate
them into a library.

= My own example of this (in R): ggutils.


https://github.com/hamishgibbs/ggutils

Classes: logic + data

e Functions: logic (a “recipe”)
e Variables: data (actual “values”)

e Classes: An abstraction for combining data and logic.



Classes

e Classes have two components:
= Attributes: data.

s Methods: functions.

class WeatherStation:

def __init__ (self, temps_f): # Default initialization method
self.temps_f = temps_f # an "attribute"

def convert_f_to_c(temp_f): # A "method"
return 5/9 * (temp_f - 32)

def convert_temps_f_to_c(self): # Another "method"
return [self.convert_f_to_c(x) for x in self.temps_f]

e Now, my functions are directly coupled to my data and |
have given thisObject aname: WeatherStation.



Using a class

e Aclassis a general purpose construct, like a function.

e We have to initialize our class with some data:

station = WeatherStation(temps_f = [100, 120, 80])

e Here, stationis an instance of the class
WeatherStation.

e Then we can use the methods of the class for this instance:

print(station.convert_temps_f_to_c())



Who cares?

e Tomorrow, we will use classes a lot.

= But, classes written by someone else!

e Seethe pandas DataFrameDescriber class: here.
= You don’t have to understand what this code does!

= The important thing is that you see how larger libraries
are made up of classes.


https://github.com/pandas-dev/pandas/blob/1e3bf39dc560948aac32a42f8266634d375fa53a/pandas/core/methods/describe.py#L136-L202

Inheritance

e Classes can be extended to represent different objects
objects with the same interface.

e Here,theWeatherStation has a general purpose
method get_temperatures_c which should always
return the temperature in Celsius.

class WeatherStation:
def _ init_ (self, temps):
self.temps = temps

def convert_f_to_c(self, temp_f):

return 5 / 9 * (temp_f - 32)

def get_temperatures_c(self):
return self.temps



Inheritance

e \We could create two child classes which inherit the
WeatherStation interface.

e Assuming an AmericanWeatherStationisalways
initialized with temps in Fahrenheit:
class AmericanWeatherStation(WeatherStation):

def get_temperatures_c(self):
return [self.convert_f_to_c(x) for x in self.temps]



Inheritance

e Assuming a EuropeanwWeatherStationisalways
initialized with temps in Celsius:
class EuropeanWeatherStation(WeatherStation):

def get_temperatures_c(self):
return self.temps



Inheritance

e Inheritance gives a common interface.

e Now, | can write a function that consumes any
WeatherStation object.

def get_total_ temp_c(station):
return sum(station.get_temperatures_c())



=~

Tutorial #1: Functions

e Functions
e Core concepts:

= Using built-in functions (and the standard library)

import math
math.logl10(10)

= Writing your own functions

def add_3(x):
return x + 3

= Composing functions

def add_5(x):
return add_3(x) + 2


https://www.py4e.com/html3/04-functions
https://docs.python.org/3/library/index.html

=~

Tutorial #2: Classes

e Object-oriented programming
e Core concepts:

= Writing custom classes

class PartyAnimal:

= |nitializing classes

an = PartyAnimal()

m Class inheritance

class CricketFan(PartyAnimal):


https://www.py4e.com/html3/14-objects

=~

Tutorial #2: possible pitfall

e Tutorial #2 includes the following code:

from party import PartyAnimal

e This requires actually breaking our code into different
scripts (. py files).

e We can’t do this because we are still using Colab.
= For now, just carry on in the same Notebook.

= We will introduce . py files this afternoon!



=~

Tutorial #3: Functions (Optional)

e More control flow tools §4.7-4.8 (Optional)

m This is more of a deep dive. If you feel shaky with the basics
of functions, work on that!

e Core concepts:

= Default arguments

def add(x, y = 2):
return x + vy

= Keyword arguments

add(4, x=4) # Error: duplicate value for the same argument


https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Extra

e Try this class composition exercise (Exercise #2).

» Define and implement the classes required to represent a
music playlist: Artist, Song, Album,and Playlist.


https://python.pages.doc.ic.ac.uk/2020/modules/module-oop/lab-2

Recommendations

e Take your time understanding functions.

= Functions will be more immediately useful to improve
your programming!

e |f you have time, make sure to try the “Extra” exercise, it will
help you think about how functions and classes fit together.



