
Collaboration
Hamish Gibbs



Collaboration
Most programming isn’t solo.

In companies / research, you are often working on a small
part of a larger project.

To collaborate - you need to share code!



Version control
To collaborate, we need:

A place to store a shared version of our code.

A way to track changes to different parts of the code.

Solution:

A “repository” to store our code

A  system to track changes to the codeversion control

https://en.wikipedia.org/wiki/Version_control


Local vs. Remote code
A repository stores the code for a specific project.

There are two different types of repository:

Local:

Think: a file folder on your computer.

Remote:

Think: a GitHub repository



Local vs. Remote code
With version control, I want my local changes to be reflected
in the remote repository.

push pull

clone

local
repo

pull

clone

add
commit

add
commit

push

remote
repo

local
repo

~you/cs31/labs/lab01/ ~partner/cs31/labs/lab01/

Image credit: Swarthmore Computer Science

https://www.cs.swarthmore.edu/git/


git and GitHub
git is an open source version control system.

Purpose: recording and reconciling changes to code.

GitHub is a place to store remote repositories.



Why use git?
The best example:

Here is the repository for 

You can:

Look at the history of changes: 

Go back to an earlier version of the course materials: 

this course

here

here

https://github.com/hamishgibbs/soda_python_foundations
https://github.com/hamishgibbs/soda_python_foundations/commits/main/
https://github.com/hamishgibbs/soda_python_foundations/tree/c9036a351a9f1e4aa45939cd5b7c11dbfb0c248a


Why use git?
git lets you:

Save a version of your code online.

Delete / modify code without losing anything.

I recommend:

Build a portfolio by saving any programming you do for
your courses in GitHub.

This can show off your programming experience for jobs /
graduate school.



Google docs
git is kind of like Google Docs.

I make a change to a document.

You make changes to the same document.

Our changes are combined together.

Except: git is very manual.



Version control
With git you need to be explicit about:

Saving changes (called ‘committing’).

‘pushing’ local changes to the remote repository.

‘pulling’ changes from the remote repository.

‘merging’ changes together.

Good question: Why does this have to be so explicit?



Aims: today
This is a high-level introduction to git but it is sufficient for
today.

We want to:

Create a place where we can compare everyone’s
solutions to the Challenge.

Let everyone contribute their local code to this remote
repository.



Aims: today
1. Clone the :

2. Copy your code to the cloned repository.

shared repository
git clone [repo-url].git1

https://github.com/hamishgibbs/soda_python_foundations_challenge_2024


Aims: today
3. Create your own branch.

4. Add & commit your changes.

git checkout -b [my-branch]1

git add [myfile].py1
git commit -m "Adding my file!"2



Aims: today
5. Push your code to the remote repository:

6. Pull other changes from the remote repository:

git push1

git push1



Other useful commands
After git add but before git commit:

Inspect which files have been created / modified / deleted:

Inspect changes to the code since the last commit:

git status1

git diff --cached1



Diving deeper into git
There is more to git:

Branching: creating different versions of the same code
base.

Merging: combining different branches back into the
main branch.

And more to GitHub:

Issue / project tracking

Automated actions



Tip
Github’s Education Benefits give you access to a lot of 

!

GitHub Copilot

GitHub Copilot Chat

Free web hosting

free
stuff

https://education.github.com/benefits
https://education.github.com/benefits

